дифференцируемость - Übersetzung nach Englisch
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

дифференцируемость - Übersetzung nach Englisch

Дифференцируемость; Непрерывная дифференцируемость; Дифференцируемость функции в точке
  • </math> и её производная.
  • График функции (чёрная кривая) и касательная прямая (красная прямая)
  • Функция имеет вертикальную касательную недифференцируема в c.
  • функции Вейерштрасса]] на интервале [−2, 2]. Этот график имеет [[фрактал]]ьный характер: увеличение (в красном круге) подобно всему графику.
  • Функция <math>x\sin\left(\frac{1}{x}\right)</math>
  • График функции <math>x^{\frac{2}{3}}</math>
  • угловую точку]]

дифференцируемость         
f.
differentiability
differentiability         
  • ''y''}}-axis.
  • Differentiable functions can be locally approximated by linear functions.
  • cusp]] on the graph of a continuous function. At zero, the function is continuous but not differentiable.
  • The function <math>f : \R \to \R</math> with <math>f(x) = x^2\sin\left(\tfrac 1x\right)</math> for <math>x \neq 0</math> and <math>f(0) = 0</math> is differentiable. However, this function is not continuously differentiable.
FUNCTION WHOSE DERIVATIVE EXISTS AT EACH POINT IN ITS DOMAIN
Differentiability; Differentiable; Continuously differentiable; Differentiabillity; Continuously differentiable function; Local linearity; Differentiable map; Nowhere differentiable; Continuous differentiability; Differentiability of a function; Differentiable functions; Differentiable mapping; Derivable function; Differentiable (function)

общая лексика

дифференцируемость

approximate differentiability         

математика

аппроксимативная дифференцируемость

Definition

Дифференцируемая функция

в точке (математическая), функция, имеющая дифференциал в этой точке. Для функций одного переменного это требование равносильно существованию производной. См. Дифференциальное исчисление.

Wikipedia

Дифференцируемая функция

Дифференци́руемая (в точке) фу́нкция — это функция, у которой существует дифференциал (в данной точке). Дифференцируемая на некотором множестве функция — это функция, дифференцируемая в каждой точке данного множества. Дифференцируемость является одним из фундаментальных понятий в математике и имеет значительное число приложений как в самой математике, так и в других естественных науках.

Приращение дифференцируемой в данной точке функции можно представить как линейную функцию приращения аргумента с точностью до величин более высокого порядка малости. Это означает, что для достаточно малых окрестностей данной точки функцию можно заменить линейной (скорость изменения функции можно считать неизменной). Линейная часть приращения функции называется её дифференциалом (в данной точке).

Необходимым, но не достаточным условием дифференцируемости является непрерывность функции. В случае функции от одной вещественной переменной дифференцируемость равносильна существованию производной. В случае функции нескольких вещественных переменных необходимым (но не достаточным) условием дифференцируемости является существование частных производных по всем переменным. Для дифференцируемости функции нескольких переменных в точке достаточно, чтобы частные производные существовали в некоторой окрестности рассматриваемой точки и были непрерывны в данной точке.

В случае функции комплексной переменной дифференцируемость в точке часто называется моногенностью и существенно отличается от понятия дифференцируемости в вещественном случае. Ключевую роль в этом играет так называемое условие Коши — Римана. Функция, моногенная в окрестности точки, называется голоморфной в этой точке.

В функциональном анализе существует обобщение понятия дифференцирования на случай отображений бесконечномерных пространств — производные Гато и Фреше.

Обобщением понятия дифференцируемой функции являются понятия субдифференцируемых, супердифференцируемых и квазидифференцируемых функций.

Übersetzung von &#39дифференцируемость&#39 in Englisch